
Regression Cheat Sheet

Kevin Penner

1 Notation

1. Population Regression: a (multiple) linear regression that describes a pop-
ulation; denoted y = Xβ + ε where

• y =
[
y1 y2 . . . yn

]T is n× 1 column vector of response variables;
y is observed

• X is n × p matrix of explanatory (independent) variables (n obser-
vations, p variables, n > p); X is observed

• β is p× 1 column vector of regression parameters

• ε =
[
ε1 ε2 . . . εn

]T is n × 1 column vector of errors; ε is unob-
served

2. Estimated Regression: least squares estimate of population regression;
estimated regression might not equal the population regression due to
measurement error, missing data, nonrandom sample, etc.; denoted y =
Xb+ e where

• y is n× 1 column vector of response variables as above

• X is n× p matrix of explanatory variables as above

• b =
[
b1 b2 . . . bp

]T is an estimate of β

• e =
[
e1 e2 . . . en

]T is residual vector

2 Regression Model in Matrix Form

• Denote the (i, j)th element of the explanatory matrix X in the following
way:

X =

x1

...
xn

 =

1 x12 . . . x1p

... . . .
...

1 xn2 . . . xnp

 .
The column of ones corresponds to the constant term in the regression.
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• Estimate β with b by minimizing sum of squared residuals (SSR), where

SSR(g) =
n∑

k=1

(yk − xkg)2 (1)

and g is any p× 1 parameter vector.

• From a calculus point of view, for b to minimize SSR, b must satisfy the
first order condition

∂ SSR(b)
∂ g

= 0. (2)

Using the fact that the derivative of each term in (1) is −2(yk − xkg)xk,
(2) is equivalent to

n∑
k=1

xT
k (yk − xkb) = X ′e = 0 (vector). (3)

Since the first column of X is all ones, (3) implies

n∑
k=1

(yk − b1 − b2xk2 − . . .− bpxkp)︸ ︷︷ ︸
ek

= 0,

i.e. the residuals always sum to 0 when an intercept is included in the
equation.

3 Assumptions to make least squares estimators
unbiased estimators of population parameters

Assumption 1: (Linear in parameters) The model can be written in the form
y = Xβ + ε.

Assumption 2: (Zero conditional mean) Conditional on the entire matrix X,
each error εi has zero mean: E[ε|X] = 0 (vector).

Assumption 3: (No perfect collinearity) In the sample, none of the indepen-
dent variables is constant, and there are no exact linear relationships
among the independent variables: X has rank p. Thus, XTX is non-
singular.

Assumption 4: (Homoskedasticity and no serial correlation)

1. V ar[εi|X] = σ2, i = 1, . . . , n. This is homoskedasticity: the variance
of εi cannot depend on any element of X, and the variance must be
constant across observations.

2. Cov[εi, εj |X] = 0, i 6= j.
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Thus, V ar[ε|X] = σ2In.

Under these assumptions, we say b is the best linear unbiased estimator. Fur-
thermore, under these assumptions, the unbiased estimator of the error variance
σ2 can be written

s2 = eT e/(n− p). (4)

Before we prove this, we briefly discuss the “hat matrix” H that has leverage
values on its diagonal:

• H = X(XTX)−1XT

• If we take the SVD

X = U

[
Σp

0n−p

]
V T

where U is n×n orthogonal, Σp has positive diagonal (by Assumption 3),
and V T is p× p orthogonal, then

H = U

[
Ip

0n−p

]
UT

• ŷ = Hy, where ŷ is a vector of fitted values.

With this in mind, we prove the unbiasedness of (4):

Proof.

e = y − ŷ
= (I −H)y
= (I −H)Xβ + (I −H)ε
= (I −H)ε. (5)

Since (I −H) is symmetric and idempotent,

eT e = εT (I −H)T (I −H)ε
= εT (I −H)ε
= trace(εT (I −H)ε) since scalar. (6)

Thus,

E[εT (I −H)ε|X] = E[tr(εT (I −H)ε)|X]
= E[tr((I −H)εεT )|X]
= tr(E[(I −H)εεT |X])
= tr((I −H)E[εεT |X])

since (I −H) is non-random
= tr((I −H)σ2In)
= σ2(n− p) (7)

since the trace of idempotent matrix is its rank.
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Rearranging (7) using (6), we get

E[εT (I −H)ε|X]/(n− p) = σ2 = E[eT e/(n− p)|X]. (8)

4 Leverage and residuals

Using (4), we can derive a relationship between leverage and residuals. Denote
the variance-covariance matrix of e as V (e). From (5), we have e = (I −H)ε, so

e− E[e] = (I −H)ε− E[(I −H)ε]
= (I −H)ε− (I −H)E[ε]

since (I −H) is non-random
= (I −H)ε (9)

since E[ε] = 0 by Assumption 2.

Then

V (e) = E[(e− E[e])(e− E[e])T ]
= (I −H)E[εεT ](I −H)T

= (I −H)Iσ2(I −H)T

since V ar[ε] = E[εεT ] by Assumptions 2 and 4
= (I −H −H +H2)σ2

= (I −H)σ2 since H2 = H,

so the variance of an individual residual ei, denoted V ar(ei), is the ith diagonal
element of V (e), which is (1− hii)σ2.

Since we do not know σ2, we estimate the variance of ei using s2 from (4):

V ar(ei) = (1− hii)s2

= (1− hii)eT e/(n− p)
≤ (1− hii)eT e.

Finally, from (5) and (9), we see e − E[e] = (I − H)ε = e, so an alternate
expression for V (e) = E[(e− E[e])(e− E[e])T ] is V (e) = eeT , so V ar(ei) = e2i .
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