Regression Cheat Sheet

Kevin Penner

1 Notation

1. Population Regression: a (multiple) linear regression that describes a population; denoted $y=X \beta+\epsilon$ where

- $y=\left[\begin{array}{llll}y_{1} & y_{2} & \ldots & y_{n}\end{array}\right]^{T}$ is $n \times 1$ column vector of response variables; y is observed
- X is $n \times p$ matrix of explanatory (independent) variables (n observations, p variables, $n>p$); X is observed
- β is $p \times 1$ column vector of regression parameters
- $\epsilon=\left[\begin{array}{llll}\epsilon_{1} & \epsilon_{2} & \ldots & \epsilon_{n}\end{array}\right]^{T}$ is $n \times 1$ column vector of errors; ϵ is unobserved

2. Estimated Regression: least squares estimate of population regression; estimated regression might not equal the population regression due to measurement error, missing data, nonrandom sample, etc.; denoted $y=$ $X b+e$ where

- y is $n \times 1$ column vector of response variables as above
- X is $n \times p$ matrix of explanatory variables as above
- $b=\left[\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{p}\end{array}\right]^{T}$ is an estimate of β
- $e=\left[\begin{array}{llll}e_{1} & e_{2} & \ldots & e_{n}\end{array}\right]^{T}$ is residual vector

2 Regression Model in Matrix Form

- Denote the $(i, j)^{t h}$ element of the explanatory matrix X in the following way:

$$
X=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{cccc}
1 & x_{12} & \ldots & x_{1 p} \\
\vdots & & \ldots & \vdots \\
1 & x_{n 2} & \ldots & x_{n p}
\end{array}\right]
$$

The column of ones corresponds to the constant term in the regression.

- Estimate β with b by minimizing sum of squared residuals (SSR), where

$$
\begin{equation*}
\operatorname{SSR}(g)=\sum_{k=1}^{n}\left(y_{k}-x_{k} g\right)^{2} \tag{1}
\end{equation*}
$$

and g is any $p \times 1$ parameter vector.

- From a calculus point of view, for b to minimize SSR, b must satisfy the first order condition

$$
\begin{equation*}
\frac{\partial S S R(b)}{\partial g}=0 \tag{2}
\end{equation*}
$$

Using the fact that the derivative of each term in (1) is $-2\left(y_{k}-x_{k} g\right) x_{k}$, (2) is equivalent to

$$
\begin{equation*}
\sum_{k=1}^{n} x_{k}^{T}\left(y_{k}-x_{k} b\right)=X^{\prime} e=0 \text { (vector). } \tag{3}
\end{equation*}
$$

Since the first column of X is all ones, (3) implies

$$
\sum_{k=1}^{n} \underbrace{\left(y_{k}-b_{1}-b_{2} x_{k 2}-\ldots-b_{p} x_{k p}\right)}_{e_{k}}=0,
$$

i.e. the residuals always sum to 0 when an intercept is included in the equation.

3 Assumptions to make least squares estimators unbiased estimators of population parameters

Assumption 1: (Linear in parameters) The model can be written in the form $y=X \beta+\epsilon$.

Assumption 2: (Zero conditional mean) Conditional on the entire matrix X, each error ϵ_{i} has zero mean: $E[\epsilon \mid X]=0$ (vector).

Assumption 3: (No perfect collinearity) In the sample, none of the independent variables is constant, and there are no exact linear relationships among the independent variables: X has rank p. Thus, $X^{T} X$ is nonsingular.

Assumption 4: (Homoskedasticity and no serial correlation)

1. $\operatorname{Var}\left[\epsilon_{i} \mid X\right]=\sigma^{2}, i=1, \ldots, n$. This is homoskedasticity: the variance of ϵ_{i} cannot depend on any element of X, and the variance must be constant across observations.
2. $\operatorname{Cov}\left[\epsilon_{i}, \epsilon_{j} \mid X\right]=0, i \neq j$.

Thus, $\operatorname{Var}[\epsilon \mid X]=\sigma^{2} I_{n}$.
Under these assumptions, we say b is the best linear unbiased estimator. Furthermore, under these assumptions, the unbiased estimator of the error variance σ^{2} can be written

$$
\begin{equation*}
s^{2}=e^{T} e /(n-p) \tag{4}
\end{equation*}
$$

Before we prove this, we briefly discuss the "hat matrix" H that has leverage values on its diagonal:

- $H=X\left(X^{T} X\right)^{-1} X^{T}$
- If we take the SVD

$$
X=U\left[\begin{array}{c}
\Sigma_{p} \\
0_{n-p}
\end{array}\right] V^{T}
$$

where U is $n \times n$ orthogonal, Σ_{p} has positive diagonal (by Assumption 3), and V^{T} is $p \times p$ orthogonal, then

$$
H=U\left[\begin{array}{ll}
I_{p} & \\
& 0_{n-p}
\end{array}\right] U^{T}
$$

- $\hat{y}=H y$, where \hat{y} is a vector of fitted values.

With this in mind, we prove the unbiasedness of (4):
Proof.

$$
\begin{align*}
e & =y-\hat{y} \\
& =(I-H) y \\
& =(I-H) X \beta+(I-H) \epsilon \\
& =(I-H) \epsilon \tag{5}
\end{align*}
$$

Since $(I-H)$ is symmetric and idempotent,

$$
\begin{align*}
e^{T} e & =\epsilon^{T}(I-H)^{T}(I-H) \epsilon \\
& =\epsilon^{T}(I-H) \epsilon \\
& =\operatorname{trace}\left(\epsilon^{T}(I-H) \epsilon\right) \text { since scalar. } \tag{6}
\end{align*}
$$

Thus,

$$
\begin{align*}
E\left[\epsilon^{T}(I-H) \epsilon \mid X\right]= & E\left[\operatorname{tr}\left(\epsilon^{T}(I-H) \epsilon\right) \mid X\right] \\
= & E\left[\operatorname{tr}\left((I-H) \epsilon \epsilon^{T}\right) \mid X\right] \\
= & \operatorname{tr}\left(E\left[(I-H) \epsilon \epsilon^{T} \mid X\right]\right) \\
= & \operatorname{tr}\left((I-H) E\left[\epsilon \epsilon^{T} \mid X\right]\right) \\
& \text { since }(I-H) \text { is non-random } \\
= & \operatorname{tr}\left((I-H) \sigma^{2} I_{n}\right) \\
= & \sigma^{2}(n-p) \tag{7}
\end{align*}
$$

since the trace of idempotent matrix is its rank.

Rearranging (7) using (6), we get

$$
\begin{equation*}
E\left[\epsilon^{T}(I-H) \epsilon \mid X\right] /(n-p)=\sigma^{2}=E\left[e^{T} e /(n-p) \mid X\right] \tag{8}
\end{equation*}
$$

4 Leverage and residuals

Using (4), we can derive a relationship between leverage and residuals. Denote the variance-covariance matrix of e as $V(e)$. From (5), we have $e=(I-H) \epsilon$, so

$$
\begin{align*}
e-E[e]= & (I-H) \epsilon-E[(I-H) \epsilon] \\
= & (I-H) \epsilon-(I-H) E[\epsilon] \\
& \text { since }(I-H) \text { is non-random } \\
= & (I-H) \epsilon \tag{9}\\
& \text { since } E[\epsilon]=0 \text { by Assumption } 2 .
\end{align*}
$$

Then

$$
\begin{aligned}
V(e)= & E\left[(e-E[e])(e-E[e])^{T}\right] \\
= & (I-H) E\left[\epsilon \epsilon^{T}\right](I-H)^{T} \\
= & (I-H) I \sigma^{2}(I-H)^{T} \\
& \text { since } \operatorname{Var}[\epsilon]=E\left[\epsilon \epsilon^{T}\right] \text { by Assumptions } 2 \text { and } 4 \\
= & \left(I-H-H+H^{2}\right) \sigma^{2} \\
= & (I-H) \sigma^{2} \text { since } H^{2}=H
\end{aligned}
$$

so the variance of an individual residual e_{i}, denoted $\operatorname{Var}\left(e_{i}\right)$, is the $i^{\text {th }}$ diagonal element of $V(e)$, which is $\left(1-h_{i i}\right) \sigma^{2}$.

Since we do not know σ^{2}, we estimate the variance of e_{i} using s^{2} from (4):

$$
\begin{aligned}
\operatorname{Var}\left(e_{i}\right) & =\left(1-h_{i i}\right) s^{2} \\
& =\left(1-h_{i i}\right) e^{T} e /(n-p) \\
& \leq\left(1-h_{i i}\right) e^{T} e
\end{aligned}
$$

Finally, from (5) and (9), we see $e-E[e]=(I-H) \epsilon=e$, so an alternate expression for $V(e)=E\left[(e-E[e])(e-E[e])^{T}\right]$ is $V(e)=e e^{T}$, so $\operatorname{Var}\left(e_{i}\right)=e_{i}^{2}$.

