Regression Cheat Sheet

Kevin Penner

1 Notation

1. Population Regression: a (multiple) linear regression that describes a pop-
ulation; denoted y = X3 + € where

T . .
° y= [yl Yo ... yn] is m x 1 column vector of response variables;
y is observed

e X is n X p matrix of explanatory (independent) variables (n obser-
vations, p variables, n > p); X is observed

e (3 is p x 1 column vector of regression parameters

T . .
= [el €2 ... Gn] is n X 1 column vector of errors; € is unob-
served

2. Estimated Regression: least squares estimate of population regression;
estimated regression might not equal the population regression due to
measurement error, missing data, nonrandom sample, etc.; denoted y =
Xb+ e where

e y isn x 1 column vector of response variables as above
e X is n X p matrix of explanatory variables as above

o bh= [bl by ... bp]T is an estimate of 3

T, .
e c— [el es ... en] is residual vector

2 Regression Model in Matrix Form

e Denote the (4, )" element of the explanatory matrix X in the following
way:
X1 1 T12 ... Tip

Ty 1 Tp2 .0 Ty

The column of ones corresponds to the constant term in the regression.



e Estimate 8 with b by minimizing sum of squared residuals (SSR), where

n

SSR(g) = Z(yk - z19)° (1)

k=1
and ¢ is any p X 1 parameter vector.

e From a calculus point of view, for b to minimize SSR, b must satisfy the
first order condition

0 SSR(b)
dg
Using the fact that the derivative of each term in (1) is —2(yx — zrg)Tk,
(2) is equivalent to

= 0. 2)

sz(yk — ab) = X'e = 0 (vector). (3)
k=1
Since the first column of X is all ones, (3) implies

Z (yr — b1 — bawpa — ... — bpxrp) =0,
k=1

ek

i.e. the residuals always sum to 0 when an intercept is included in the
equation.

3 Assumptions to make least squares estimators
unbiased estimators of population parameters

Assumption 1: (Linear in parameters) The model can be written in the form
y=X0B+e

Assumption 2: (Zero conditional mean) Conditional on the entire matrix X,
each error ¢; has zero mean: Ee|X] = 0 (vector).

Assumption 3: (No perfect collinearity) In the sample, none of the indepen-
dent variables is constant, and there are no exact linear relationships
among the independent variables: X has rank p. Thus, X7 X is non-
singular.

Assumption 4: (Homoskedasticity and no serial correlation)

1. Varle;)|X] = 02, i =1,...,n. This is homoskedasticity: the variance
of ¢; cannot depend on any element of X, and the variance must be
constant across observations.

2. Covle;, €| X] =0, i #j.



Thus, Varle| X] = o21,.

Under these assumptions, we say b is the best linear unbiased estimator. Fur-

thermore, under these assumptions, the unbiased estimator of the error variance

o2 can be written

s2=eTe/(n —p). (4)
Before we prove this, we briefly discuss the “hat matrix” H that has leverage
values on its diagonal:

o H=X(XTX)txT
o If we take the SVD

X—U{Z”}VT

On_p

where U is n x n orthogonal, ¥, has positive diagonal (by Assumption 3),
and V7 is p x p orthogonal, then

HU{I” }UT

On—p
e y = Hy, where § is a vector of fitted values.

With this in mind, we prove the unbiasedness of (4):

Proof.

(
= (I-H)XpB+(I—-H)e
(I — H)e. (5)

Since (I — H) is symmetric and idempotent,
ele = (I-H)'(I-H)e
e'(I — H)e
= trace(e! (I — H)e) since scalar. (6)

Thus,
E["(I - H)e|X] = E[tr(eT( H)e

Il
T
—~
nj%*
= =

= tr((d - )E [ec”|X])
since (I — H) is non-random

= tr((I — H)o’I,)

= o*(n—p) (7)
since the trace of idempotent matrix is its rank.



Rearranging (7) using (6), we get

Ele"(I — H)e|X]/(n —p) = 0 = Ele"e/(n — p)| X]. (8)

4 Leverage and residuals

Using (4), we can derive a relationship between leverage and residuals. Denote
the variance-covariance matrix of e as V(e). From (5), we have e = (I — H)e, so

e—Ele] = (I—-H)e—E[(I—-H)
= (I-H)e— (I - H)E|€
since (I — H) is non-random
— (- H)e o)
since E[e] = 0 by Assumption 2.

Then

Vie) = El(e— Ele])(e~ Ele])]
= (I - H)E[ee" (I - H)"
= (I-H)Io*(I-H)"
since Var[e] = E[ee’] by Assumptions 2 and 4
= (I-H-H+H?*o?
(I — H)o? since H? = H,
so the variance of an individual residual e;, denoted Var(e;), is the i'" diagonal

element of V(e), which is (1 — h;;)o2.
Since we do not know o2, we estimate the variance of e; using s? from (4):

Var(e;) = (1—hy)s®
= (L—hy)ee/(n—p)
S (1 — hii)eTe.

Finally, from (5) and (9), we see e — Ele] = (I — H)e = e, so an alternate
expression for V(e) = E[(e — Ele])(e — E[e])T] is V(e) = ee”, so Var(e;) = e7.
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