Why do "least squares" regression?

Kevin Penner

1 Introduction

- Instead of minimizing the sum of the squared errors, why not the sum of the absolute value of the errors or the sum of the reciprocal of the errors?
- One justification: least squares estimates of coefficients are also maximum likelihood estimates.

• Maximum likelihood method:

- 1. What want to do: Look at sample data. Hypothesize the type of distribution that underlies the data. Choose parameter estimates to be the values for which the probability of getting the sample values is a maximum.
- 2. How do this: A likelihood function L(p) is a function that gives the likelihood a set of data is observed given the parameter vector p. Thus,

L(p) = Prob(observe data given value of parameters).

We want to get the likelihood as high as possible, so we maximize L(p) subject to p.

- **Example** Given x heads in n coin flips, what is the maximum likelihood estimate of θ , the probability of heads?
 - 1. Distribution underlying the data is the *binomial* distribution.
 - 2. Given this distribution, need to maximize:

$$L(\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}$$

subject to θ .

3. For convenience, we can maximize $\ln[L(\theta)] = LL(\theta)$ instead of $L(\theta)$:¹

$$LL(\theta) = \ln\left[\binom{n}{x}\right] + x\ln[\theta] + (n-x)\ln[(1-\theta)]$$

$$\frac{dLL(\theta)}{d\theta} = \frac{x}{\theta} - \frac{n-x}{1-\theta} = 0.$$
 (1)

- 4. So equation (1) implies $\theta = \frac{x}{n}$.
- 5. So if we get 3 heads in 10 tosses, the maximum likelihood estimate of the probability of heads is $\frac{3}{10}$.

2 Least Squares and Maximum Likelihood

First we need to make some assumptions about our data. Assume

- There are n data points (x_i, y_i) .
- The data points are independent.
- The y_i s can be modeled as a linear function of x_i s, i.e. $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$.
- The noise terms ϵ_i are normally distributed with mean 0 and variance σ^2 .
- Randomness in y_i comes from noise, ϵ_i . Thus, at each fixed x_i , the corresponding y_i is normally distributed with mean $\beta_0 + \beta_1 x_i$ and variance σ^2 . Using the formula for the normal distribution, we have:

$$\operatorname{Prob}(y_i|x_i) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}\left[\frac{y_i - (\beta_0 + \beta_1 x_i)}{\sigma}\right]^2}.$$

• Interpret the term $y_i - (\beta_0 + \beta_1 x_i)$ as:

$$\underbrace{y_i}_{\text{actual}} - \underbrace{(\beta_0 + \beta_1 x_i)}_{\text{estimate}} = \underbrace{\epsilon_i}_{\text{noise}}$$

Now, we need to estimate the parameters $p = (\beta_0, \beta_1, \sigma)$ with our *n* data points. We use the log-likelihood function to do this. The probability of getting our set of data with β_0

¹We can do this because $\ln(\bullet)$ is a monotonically increasing function, so $\ln(x)$ preserves the order of x. For example, assume we have x_1 and x_2 such that $x_1 \ge x_2$. Then, setting $x'_1 = \ln(x_1)$ and $x'_2 = \ln(x_2)$, we still have $x'_1 \ge x'_2$.

and β_1 is

$$L(p) = \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2} \left[\frac{y_i - (\beta_0 + \beta_1 x_i)}{\sigma}\right]^2}, \text{ so}$$
$$LL(p) = \sum_{i=1}^{n} \frac{-[y_i - (\beta_0 + \beta_1 x_i)]^2}{2\sigma^2} + \sum_{i=1}^{n} \ln\left(\frac{1}{\sigma\sqrt{2\pi}}\right)$$
$$= \frac{1}{2\sigma^2} \left(\sum_{i=1}^{n} -[y_i - (\beta_0 + \beta_1 x_i)]^2\right) - n\ln\left(\sigma\sqrt{2\pi}\right)$$
(2)

Maximizing equation (2) with respect to β_0 and β_1 , we get

$$\frac{\mathrm{d}LL(p)}{\mathrm{d}\beta_0} = \frac{1}{\sigma^2} \left(\sum_{i=1}^n [y_i - (\beta_0 + \beta_1 x_i)] \right) = 0$$
$$\frac{\mathrm{d}LL(p)}{\mathrm{d}\beta_1} = \frac{1}{\sigma^2} \left(\sum_{i=1}^n x_i [y_i - (\beta_0 + \beta_1 x_i)] \right) = 0$$

These are the same expressions we get when minimizing the sum of the squared residuals

$$\sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2 \tag{3}$$

with respect to β_0 and β_1 . Thus, the maximum likelihood estimates of β_0 and β_1 are least-squares estimates!

As a final note, notice the negative sign in the sum in equation (2) - this is why maximizing the LL(p) is the same as minimizing the RSS.