Why do “least squares” regression?

Kevin Penner

1 Introduction

e Instead of minimizing the sum of the squared errors, why not the sum of the absolute
value of the errors or the sum of the reciprocal of the errors?

e One justification: least squares estimates of coefficients are also mazximum likelihood
estimates.

e Maximum likelihood method:

1. What want to do: Look at sample data. Hypothesize the type of distribution
that underlies the data. Choose parameter estimates to be the values for which
the probability of getting the sample values is a maximum.

2. How do this: A likelihood function L(p) is a function that gives the likelihood
a set of data is observed given the parameter vector p. Thus,

L(p) = Prob(observe data given value of parameters).

We want to get the likelihood as high as possible, so we maximize L(p) subject
to p.

Example Given x heads in n coin flips, what is the maximum likelihood estimate
of 8, the probability of heads?

1. Distribution underlying the data is the binomial distribution.

2. Given this distribution, need to maximize:

L(9) = (Z) 67(1— 0)""

subject to 6.



3. For convenience, we can maximize In[L(#)] = LL(0) instead of L(f):*

LL(®) = In {(Zﬂ + 21n[f] + (n — z)In[(1 — )]
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4. So equation (1) implies § = £
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5. So if we get 3 heads in 10 tosses, the maximum likelihood estimate of the
probability of heads is 1—30.

2 Least Squares and Maximum Likelihood

First we need to make some assumptions about our data. Assume
e There are n data points (z;, ;).
e The data points are independent.

e The y;s can be modeled as a linear function of x;8, i.e. y; = By + B1x; + €.

e The noise terms ¢; are normally distributed with mean 0 and variance o2.

e Randomness in y; comes from noise, ¢;. Thus, at each fixed x;, the corresponding y;
is normally distributed with mean 3y + 3;x; and variance 2. Using the formula for
the normal distribution, we have:
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e Interpret the term y; — (8o + Pix;) as:

yi —(Bo+Bixi) = €
< Y =~

actual estimate noise

Now, we need to estimate the parameters p = (5y , 81, o) with our n data points. We use
the log-likelihood function to do this. The probability of getting our set of data with Gy

"We can do this because In(e) is a monotonically increasing function, so In(x) preserves the order of z.
For example, assume we have z1 and z2 such that z; > z2. Then, setting 7 = In(z1) and x5 = In(z2), we
still have x} > x5.
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Maximizing equation (2) with respect to fp and 1, we get
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These are the same expressions we get when minimizing the sum of the squared residuals

n
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with respect to Gy and ;. Thus, the maximum likelihood estimates of Gy and [3; are
least-squares estimates!

As a final note, notice the negative sign in the sum in equation (2) - this is why
mazimizing the LL(p) is the same as minimizing the RSS.



