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1 Introduction

• Instead of minimizing the sum of the squared errors, why not the sum of the absolute
value of the errors or the sum of the reciprocal of the errors?

• One justification: least squares estimates of coefficients are also maximum likelihood
estimates.

• Maximum likelihood method:

1. What want to do: Look at sample data. Hypothesize the type of distribution
that underlies the data. Choose parameter estimates to be the values for which
the probability of getting the sample values is a maximum.

2. How do this: A likelihood function L(p) is a function that gives the likelihood
a set of data is observed given the parameter vector p. Thus,

L(p) = Prob(observe data given value of parameters).

We want to get the likelihood as high as possible, so we maximize L(p) subject
to p.

Example Given x heads in n coin flips, what is the maximum likelihood estimate
of θ, the probability of heads?

1. Distribution underlying the data is the binomial distribution.
2. Given this distribution, need to maximize:

L(θ) =
(
n

x

)
θx(1− θ)n−x

subject to θ.
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3. For convenience, we can maximize ln[L(θ)] = LL(θ) instead of L(θ):1

LL(θ) = ln
[(
n

x

)]
+ xln[θ] + (n− x)ln[(1− θ)]

dLL(θ)
dθ

=
x

θ
− n− x

1− θ
= 0. (1)

4. So equation (1) implies θ = x
n .

5. So if we get 3 heads in 10 tosses, the maximum likelihood estimate of the
probability of heads is 3

10 .

2 Least Squares and Maximum Likelihood

First we need to make some assumptions about our data. Assume

• There are n data points (xi, yi).

• The data points are independent.

• The yis can be modeled as a linear function of xis, i.e. yi = β0 + β1xi + εi.

• The noise terms εi are normally distributed with mean 0 and variance σ2.

• Randomness in yi comes from noise, εi. Thus, at each fixed xi, the corresponding yi

is normally distributed with mean β0 + β1xi and variance σ2. Using the formula for
the normal distribution, we have:

Prob(yi|xi) =
1

σ
√

2π
· e−

1
2

h
yi−(β0+β1xi)

σ

i2

.

• Interpret the term yi − (β0 + β1xi) as:

yi︸︷︷︸
actual

− (β0 + β1xi)︸ ︷︷ ︸
estimate

= εi︸︷︷︸
noise

Now, we need to estimate the parameters p = (β0 , β1, σ) with our n data points. We use
the log-likelihood function to do this. The probability of getting our set of data with β0

1We can do this because ln(•) is a monotonically increasing function, so ln(x) preserves the order of x.
For example, assume we have x1 and x2 such that x1 ≥ x2. Then, setting x′1 = ln(x1) and x′2 = ln(x2), we
still have x′1 ≥ x′2.
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and β1 is

L(p) =
n∏

i=1

1
σ
√

2π
· e−

1
2

h
yi−(β0+β1xi)

σ

i2

, so

LL(p) =
n∑

i=1

−[yi − (β0 + β1xi)]2

2σ2
+

n∑
i=1

ln
(

1
σ
√

2π

)

=
1

2σ2

(
n∑

i=1

−[yi − (β0 + β1xi)]2
)
− nln

(
σ
√

2π
)

(2)

Maximizing equation (2) with respect to β0 and β1, we get

dLL(p)
dβ0

=
1
σ2

(
n∑

i=1

[yi − (β0 + β1xi)]

)
= 0

dLL(p)
dβ1

=
1
σ2

(
n∑

i=1

xi[yi − (β0 + β1xi)]

)
= 0

These are the same expressions we get when minimizing the sum of the squared residuals

n∑
i=1

[yi − (β0 + β1xi)]2 (3)

with respect to β0 and β1. Thus, the maximum likelihood estimates of β0 and β1 are
least-squares estimates!

As a final note, notice the negative sign in the sum in equation (2) - this is why
maximizing the LL(p) is the same as minimizing the RSS.
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